If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2=490
We move all terms to the left:
40x^2-(490)=0
a = 40; b = 0; c = -490;
Δ = b2-4ac
Δ = 02-4·40·(-490)
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78400}=280$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-280}{2*40}=\frac{-280}{80} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+280}{2*40}=\frac{280}{80} =3+1/2 $
| 1x+1+1x=3x | | 6.4=2v | | x-2/7=100 | | (r-16)/4=12 | | k+2k+k+65=180 | | 3(-4x+3)=-135 | | r-16/4=12 | | 4x²+81=0 | | 7n+3=n+1 | | X/5=3/35+(x+1)/7 | | 38+5x+11=180 | | 9g=10g=8 | | 6b-6=4b+6 | | 8x-15+5x=180 | | 0=-2k+2k | | 20x+5=7x-21 | | -7(-9+4x)=147 | | 5-17x=5x-39 | | 516−3p=32 p+516, | | k+8=5k-5 | | 2+3s=62 | | 18x-1=20x-5 | | +16x+1-4x=24+8x-9+3x | | 15.1x+15.6=125.83 | | 6n+1=3n-2 | | 20x-5=18x-1 | | 5x=1/2(x+6+90) | | -5(1x-10)=45 | | 0,8(05-2x)=2x+0,4 | | 0.3x-33=45 | | 85=60+b | | 0.25x+97=180 |